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We report experimental evidence of transition scenarios during the chemical evolution in an unstirred closed
Belousov-Zhabotinsky (BZ) system. We demonstrate that during its chemical evolution the system
spontaneously gives the following sequence of dynamic behavior before reaching equilibrium: period-1f
quasiperiodicityf chaosf quasiperiodicityf period-1. Two transition scenarios are observed: at the onset
of chaos and at its end. One appears as the mirror image of the other. Our observations support the view that
closed chemical systems also are able to show chaotic behavior and the corresponding transition scenarios.

I. Introduction

One of the major problems in nonlinear dynamics is
discovering how the dynamic behavior of a system changes and
evolves as its constraints (control parameters) are changed.1

Nonlinear open chemical systems, for example, show various
dynamic behaviors depending on the values of their control
parameters. The Belousov-Zhabotinsky (BZ) reaction is widely
known for its variety of dynamic regimes.2 In continuous stirred
tank reactor (CSTR) experiments, the parameters are the reagent
concentrations and/or their residence times. The qualitative
structure of the dynamics can change as parameters are varied.
These qualitative changes are called bifurcations.

Complex and various dynamic behaviors have been experi-
mentally observed and classified. Chaos is probably the most
intriguing. Several means for the characterization of the chaotic
behavior are available today. In particular, the individualization
of the transition scenario leading to chaos supplements and
supports the characterization of the chaotic state.

It is well established that closed chemical systems can exhibit
various dynamic regimes. Nevertheless, these are strictly
transient because closed systems naturally move through the
parametric space. Indeed the parameters are not affected by any
external action, but they spontaneously change during the
chemical evolution until the ultimate equilibrium has been
reached. However, transient behavior may be sustained for
significant periods of time, and the chemical mixture can be
considered to evolve in consecutive different pseudosteady states
by spontaneous transitions. Therefore, with some special
considerations, it is possible to study the dynamic states and
the relative transition scenarios also for closed chemical systems.
Evidently, particular attention must be paid to evaluate the
stationarity of the signal. The successive transient states that
spontaneously evolve during the chemical evolution seem to
be risen through a bifurcation mechanism. Stryzhak and Pojman3

presented evidence that in a semibatch reactor, where all
phenomena are transient, it was possible to apply bifurcation
analysis to explain the experimental results: the varying “initial

concentration” of a chemical in the vessel may be considered
as a bifurcation parameter. According to that, the onset of these
transitions between successive transient states can be then
interpreted as a bifurcation.3

Not only simple oscillations but also chaotic behavior can
take place in a closed BZ system. As a matter of fact, sensitivity
to initial conditions has been pointed out in such systems at
transient conditions both theoretically and experimentally.4-7

Transient scenarios in the BZ system have also been the object
of investigation.8-14 For example, Wacker et al.15 showed the
existence of a transient spatiotemporal chaos for a reaction
diffusion system. In 1980, Nagashima proved the existence of
a chaotic state for the under nitrogen well stirred and temperature
controlled batch BZ reaction.16 Wang et al.17 showed experi-
mental evidence of successive transient period doubling and
torus oscillations to transient chaos in a closed well mixed BZ
system.

Our attention has been turned to the closed unstirred BZ
system. Using suitable initial concentrations of reagents, this
system shows various dynamic regimes despite the inevitable
continuous drift toward the ultimate thermodynamic equilibrium.
In particular, an aperiodic transient regime is followed by a
periodic one. First, we proved the chaoticity of the aperiodic
transient showing experimental evidence of the sensitivity of
the system to its initial conditions, which is considered to be
the major distinguishing feature of chaos.4 Second, we also
showed that the transition chaotic (aperiodic)f periodic occurs
via an inverse Ruelle-Takens-Newhouse (RTN) scenario.18

The individuation of a typical scenario indirectly strengthened
our characterization of the aperiodic transient as chaotic. It is
important to note that a system shows the RTN scenario when,
varying a system’s parameter, the power spectrum will exhibit
one, then two, and possibly three independent basic frequen-
cies.19 This type of behavior corresponds to the sequence
period-1f quasiperiodicityf chaos, or, as far as the attractors
in the phase space are concerned, limit cyclef torusf strange
attractor.

In this paper we discuss how the chaos begins and the way
it develops for an unstirred BZ system. We also discuss the
complete sequence of regimes that appears during the chemical
evolution of the reaction.
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II. Experimental Methods

All experiments were performed isothermically at room
temperature (∼20 °C) in a batch reactor (spectrophotometric
cuvette, 1× 1 × 4 cm3). The dynamics were monitored by the
solution absorbance at 320 nm using quartz UV grade spectro-
photometer cuvettes. A double beam spectrophotometer (Varian,
series 634) was used. All chemicals were of analytical quality
and were used without further purification. The following
concentration of reactant’s stock solutions were used: Ce(SO4)2

0.004 M, malonic acid 0.30 M, KBrO3 0.09 M; each stock
solution was 1 M H2SO4. The oscillator was started by mixing
equal quantities of reactants in an flask and by stirring the
solution for 10 min (with a Teflon-coated magnetic stirrer, length
1 cm) at a constant high stirring rate. The solution was then
poured into the cuvette until the sample reached the top, and
measurement of the signal began. The cross-sectional area of
the spectrophotometer light beam was 30 mm2. The volume
spanned by the beam was 300 mm3 (7.5% of the total volume)
and was located 2 cm away from the liquid-air interface, 1
cm away from the bottom of the cuvette and about 0.4 cm away
from the sides.

Some experiments were performed by adding polyethylene-
glycol (Mh n ) 3 × 105) during the chaotic phase of dynamics in
order to modify viscosity of the medium and to obtain at least
a preliminary evaluation of the importance of convection in
affecting the dynamic behavior.

The spectrophotometer was connected to an IBM-compatible
PC for data acquisition by an analogue to digital (board)
converter with a 12 bit resolution. The absorbance was recorded
with aτs ) 1 s sampling time. Time series points were recorded
and stored in a computer for data analysis.

III. Results and Discussion

Figure 1a shows a spectrophotometric time series in which
it is possible to note two transitions. We can represent this
behavior by the following scheme: periodicf aperiodicf
periodic. The aperiodic interval lasts for about 2 h. Our previous
experiments4 show that such behavior is an example of a chaotic
transient. We think this is the right time to make a remark about
the use of terms such as “periodic” used in this context. Strictly
speaking, due to the transient nature of the system, the term
periodic, for example, is not the most appropriate word to
indicate the two nonaperiodic regions shown in Figure 1a.
However, owing to the lack of commonly accepted terminology
for some phenomena observed in batch reactors, we use terms
such as “periodic” to indicate transient behavior of this kind
(behavior whose power spectra show only one frequency when
a sufficiently short time series fragment is considered, see later
Figures 6a and 9c). The stirring effect on the dynamics of the
system was also investigated.4 No chaotic phase appears when
stirring occurs, but only the periodic pattern is observed. The
stirring effect will be more extensively discussed later.

To study the transition scenarios that occur in the absence of
stirring, the spectral analysis, fast Fourier transform (FFT), was
performed on sequential 1024 point portions of the time series.
To increase the spectral resolution, we applied the zero filling
technique. The short time fragments (1024 points) were
transformed into longer time series sequences (2048 points) by
adding a constant value equal to the minimum of the signal
amplitude at the end of the fragments. In this way the spectral
resolution∆f ) 1/N τs, whereN is the number of points of the
considered time fragment andτs is the sampling time, was
doubled. Discontinuities at the window edges have been reduced

by multiplying the considered data with a Hanning window
function.20 This operation suppresses side lobes, which would
otherwise be produced in the power spectrum of the signal.

As for other algorithms for the time series analysis, the FFT
requires stationary data sets. Indeed, the lack of stationarity can
raise distortions in the power spectrum. To check for the
stationarity of time series portions, we preliminarily performed
the recurrence plot calculation and the recurrence analysis.21-24

Figure 1. (a) Spectrophotometric recording (λ ) 320 nm, sampling
time τs ) 1 s) at room temperature (∼20 °C) in the absence of stirring.
The time series exhibits two transitions: periodicf aperiodic and
aperiodic f periodic. Three regions are thus observed: periodic,
aperiodic, and periodic. (b) Projection of the reconstructed attractor
(embedding dimensionm ) 10, time delayτ ) 19) for the time series
interval 1-1024 s on the plane (sk, sk+τ) is shown. (c) The same as (b)
but for the 1800-5400 s time interval.
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A. Recurrence Analysis.The whole considered experimental
time series (s1, s2, ..., sn), n ) 14000, (sj ) s(t ) jτs) whereτs

) 1 s is the sampling time) quoted in Figure 1a was blocked
into sequentialN ) 1024 point long portions (epochs)

offset byw ) 100. The number of epochsp is chosen in order
to satisfyN + (p - 1)w e n. In this case a number ofp ) 130
epochs resulted.

Sequential epochs were subjected to RQA. The RQA is an
extension of the recurrence plot (RP). First introduced in a 1987
paper by Eckmann, Kamphorst, and Ruelle,21 the RP is an
analysis tool for experimental time series data. The RP is a
graphical method designed to locate recurring patterns (hidden
rhythms) and nonstationarities (drifts) in experimental data sets.
To obtain the RP of each epochEi ) (e1, e2, e3, ..., eN) )
(s1+(i-1)w, s2+(i-1)w, ...,sN+(i-1)w), them-dimensional phase-space
portrait of each time series epoch is reconstructed by the time
delay method.25-27 Thus, trajectories in them-dimensional
“embedding space” pass through the points

wherem is the embedding dimension,τ is the time delay, and
q satisfiesq + (m - 1)τ e N. Once the phase portrait for the
considered epoch is reconstructed, a pointxi is chosen on the
trajectory and a ball of radiusr centered on it;r is selected so
that it contains a reasonable number of other pointsxj on the
trajectory. The RP is constructed as an array of dots in aq ×
q square, where a dot is drawn at (i, j) wheneverxj is within
ther radius ball (Euclidean distance) centered onxi (notice that,
as|xi - xj| ) |xj - xi|, the RP is symmetrical with respect to
its main diagonal). Thus the RP is the plot of the recurrent
points, where (i, j) is a recurrent point if the reconstructed vectors
xi and xj are near each other (such as|xi - xj| e r) in
m-dimensional space. In this way the RP takes each single
variable measurement time series epoch and projects it into
multidimensional space by the embedding procedure identifying
time correlations (recurrence) that are not apparent in the one-
dimensional time series. However, RPs often contain subtle
patterns that are not easily ascertained by qualitative visual
inspection. The original visual description of RPs was improved
by Webber et al.23 by computing an array of specific recurrence
variables that quantify the deterministic structure and complexity
of the RPs. By plotting the recurrence variables as a function
of the index of the very first point for each portion calculation,
i.e., as a function of 1+ jw, j ) 1, 2, ...,p, it is possible to
easily assess the quantitative features of the obtained sequential
RPs. The recurrence analysis is far simpler and more objective
than visual of the RP. Such an analysis constitutes the so-called
RQA. This is very useful to evaluate the signal stationarity
within each epoch and the possible transitions as the signal goes
from epoch to epoch.

For our aims we considered three recurrence variables:
percent recurrence, percent determinism, and their ratioR.22,23

The % recurrence quantifies the percentage of the plot
occupied by recurrent points. Thus, % recurrence) 100(2qr/
(q2 - q)), whereqr is the number of recurrent points upward
the diagonal line. Periodic dynamics have higher percent
recurrence values than aperiodic dynamics.

The % determinism quantifies the percentage of recurrent
points that form upward diagonal line segments. Lines consist
of two or more points that are diagonally adjacent with no
intervening white space. Thus, % determinism) 100(2ql/(q2

- q)), whereql is the number of recurrent points that form
upward diagonal line segments. This variable distinguishes
recurrence points that are individually dispersed and those that
are organized into specific diagonal patterns (deterministic
dynamics repeat themselves, giving rise to diagonal line
structure).

The ratio variableR, finally, is defined as the ratio of percent
determinism to percent recurrence and addresses nonstationarity

E1 ) (s1, s2, ...,sN)

E2 ) (s1+w, s2+w, ...,sN+w)

E3 ) (s1+2w, s2+2w, ...,sN+2w)

l

Ep ) (s1+(p-1)w, s2+(p-1)w, ...,sN+(p-1)w)

x1 ) {e1, e1+τ, e1+2τ, ...,e1+(m-1)τ}

x2 ) {e2, e2+τ, e2+2τ, ...,e2+(m-1)τ}

l

xq ) {eq, eq+τ, eq+2τ, ...,eq+(m-1)τ}

Figure 2. The spectrophotometric signal (a) was blocked off in
sequential 1024-point epochs (1024 s). Each epoch of data was
subjected to recurrence quantification analysis with embedding dimen-
sionm) 10, time delayτ ) 19 and cutoffr ) 4 relative units (distances
were scaled in order to get 100 as the mean distance). Here, %
recurrence (b) and % determinism (c), epoch by epoch, were plotted
as functions of the first point epoch index (i.e., as a function of time)
with w ) 100 s increments. Therefore, the abscissae in (b) and (c)
identify the very first point of each epoch analyzed.
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characteristics in RP. In fact, during a transition, the percent
recurrence usually decreases but the percent determinism is less
affected; thus, the ratio value increases substantially but settles
down again when a new quasi-steady state is achieved.

Figure 2 shows the % recurrence and determinism when the
embedding dimension is 10 and the time delay is 19.24 Each
point quoted in Figure 2b,c refers to a recurrence analysis carried
out on 1024 point portions. The abscissae identify the very first
point for each portion calculation. A high % recurrence and
determinism for the regions (I) and (III) can be seen as expected.
On the contrary, the (II) region, corresponding to the aperiodic
zone, displays a low % recurrence. The low percent determinism
would seem to indicate a stochastic nature of the signal.
Nevertheless, when the complete (II) region (4096 points) is
considered, the % determinism increases, settling down to an
acceptable value above 55%, (Figure 3a). On the other hand,
the % recurrence remains very low (e0.05%), (Figure 3b). The
% determinism and % recurrence vanishe when the signal is
randomized.23 These results demonstrate that the region (II) is
a deterministic signal despite its aperiodic feature. This strength-
ens our previous findings,4 namely that the aperiodic signal is
nothing but a chaotic pattern.

The ratio variableR for the transition zones (a) periodicf
chaotic and (b) chaoticf periodic is reported in Figure 4. In
particular, Figure 4a allows us to locate the pointR up to which
the signal can be considered pseudostationary. Similarly, in
Figure 4b the pointâ was located after which the signal becomes
pseudostationary and the regions pointed out in the dotted box
and beyond theâ point are pseudostationary.

The spectral analysis of portion data requires that the signal
within each portion be stationary, as previously mentioned. The

previous discussion on Figure 4 suggest that short 1024 point
portions starting within time intervals 1-1400 s, 5400-5700
s, and 6400-8400 s are stationary. Therefore, it is possible to
apply the FFT algorithm to 1024 point portions starting within
the above-mentioned time intervals.

B. Time Series and Power Spectra Analysis.First Transi-
tion: Periodic f Chaotic. Three regions isolated from Figure
1a are reported in Figure 5. Notice that the regions (a) and (b)
belong to the stationary time intervals previously individuated.
The power spectra of the regions (a), (b), and (c) are shown in
Figure 6.

Figure 3. Here, % determinism (a) and % recurrence (b) are shown
as a function of time delayτ and embedding dimensionm for the whole
(II) aperiodic region (4906 points). A cutoff ofr ) 4 relative units
(mean distance) 100) was used.

Figure 4. Ratio variable values, (b) and (d), respectively, pertaining
to the first (a) and second (c) transition zones as a function of the first
point epoch index (epochs are offset byw ) 100). Parameter settings:
m ) 10, τ ) 19, r ) 4 relative units (mean distance) 100). Before
the pointR after the pointâ and within the dotted box the signal can
be considered stationary.
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As illustrated in Figure 6a, the starting periodic regime is
nearly sinusoidal with only a few harmonics of the fundamental
frequency (f1 ∼ 0.01 Hz) above the noise level.

After about 15 min, we can point out (Figure 6b) the
appearance of a new frequency (f2 ∼ 0.007 Hz) smaller thanf1.
The combination frequencies|af1 + bf2|, wherea and b are
small integers, are also observed. The birth of the new frequency
f2 and one of the combinations withf1 during the chemical
evolution is reported in Figure 7. A quasiperiodic regime takes
place.

After an additional 15 min, the FFT of the aperiodic region
gives a broadband spectrum, Figure 6c.

The chaotic quality of the aperiodic region being already
proved,4 the sequence periodic (limit cycle)f quasiperiodic
(torus) f chaotic (strange attractor) can be identified by
inspection of Figure 6. This proves the occurrence of the RTN
scenario. This is the first time that a transient RTN scenario
has been observed during the temporal evolution of an unstirred
closed BZ system.

It is interesting to hypothesize in which way such a scenario
takes place. Previous findings proved that the interplay between
chemical kinetics and diffusion-convective processes is of
paramount importance for the appearance of the chaotic phase.
Indeed, the system does not show any chaotic phase when
stirring occurs.4 We take note that diffusion and convection

Figure 5. First transition: periodicf chaotic. Three different regions
isolated from the time series of Figure 1a are shown: (a) periodic region,
(b) intermediate region, (c) aperiodic region.

Figure 6. Here, (a), (b), and (c) show the square of the Fourier
transform of the time series of Figure 5a, b, c, respectively. Notice, in
(b), the existence of two frequencies not rationally related.
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spontaneously occur in the absence of stirring. The first
transition (Figure 1a) takes place in a short period (about 25
min). Moreover, when the stirring was started only after the
aperiodic behavior occurred, periodic oscillations suddenly
appeared; on the other hand, some time (about 8 min) is required
to recover the aperiodic pattern after the stirring is stopped.4 In
these lapses of time, the convective and diffusive processes
develop, while the concentration of the reactants remains
practically unchanged. Then the chaotic behavior observed,
which appears under nonstirring condition, begins as soon as
the diffusion and convective processes occur. Therefore, the
coupling of the chemical reaction rate with diffusion and
convection should govern the quasiperiodic and chaotic spa-
tiotemporal evolution. In this work, we do not provide any
mechanistic interpretation of the transition scenario observed:
nevertheless, we suggest that diffusive and convective motions
appear to be good candidates to understand the bifurcation
mechanism underlying the observed transition scenario.

To evaluate the role that the convection plays in determining
the dynamic behavior of the system, we tried to eliminate
convective motions. A sure way to reach this goal was to run
the reaction in a gel medium.28 Nevertheless, some chemicals
(for example polyethylene glycol) are able to increase the
medium viscosity, thus reducing the convective motions. Taking
advantage of this, we added to the reaction solution polyethylene
glycol (0.50 mg/mL). We observed the disappearance of the
chaotic phase: only periodic behavior occurred. We conclude
that convection plays a critical role in this first transition
scenario. Nevertheless, the convection could be buoyancy-driven
or surface-tension-driven. To distinguish which type of convec-
tions couple to local kinetics, we performed the experiment with
a cuvette completely filled and sealed. In this way we eliminated
the air/water interface and consequently the surface-tension-
driven convection. No significant difference in the dynamic
behavior was observed. Thus, the convection that is coupled to
kinetics is believed to be buoyancy driven.

We suggest that the dynamic behavior of this system should
be modeled by reaction-diffusion-convection equations, where
the convection effects would occupy the crucial role in describ-
ing the observed RTN transition scenario. The recently proposed
Legawiec and Kawczyn´ski model,29 suitable when completed
in order to take into account the buoyancy-driven convection,30

could be a good starting point to interpret our experimental
results.

Second Transition: Chaotic f Periodic. Figure 8a shows
the last portion of the chaotic region before the appearance of
the new periodic interval (Figure 8c). The intermediate region
is shown on Figure 8b. The FFTs of the temporal series
belonging to these three regions are shown on Figure 9. Figure
9a shows the typical broadband spectrum characteristic either
of noise or chaotic signals. The power spectra shown in Figure
9c display the fundamental frequency (f1 ∼ 0.006 Hz) and a
few harmonics. The power spectrum of the intermediate region
(Figure 9b) shows the existence of two frequencies (f2 ∼ 0.005
and f1 ∼ 0.008 Hz) and their combinations which are not
rationally related. The power spectra displayed in Figure 9
correspond to the following bifurcation scheme: chaosf
quasiperiodicityf period-1. The appearance of this behavior

Figure 7. Square of the Fourier transform of sequential time series
portions shifted by 100 points (100 s) corresponding to the transition
region. The time interval 500-1824 s is considered. Notice the gradual
rising of the frequencyf2 and the appearance of the combination band
f1 + f2.

Figure 8. Second transition: chaoticf periodic. Three different time
intervals of the run quoted in Figure 1a are shown: (a) chaotic zone,
(b) transition zone, and (c) periodic zone.
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should be a manifestation of an inverse RTN scenario; this result
gives added weight to our previous work.18

It is interesting to note that chaotic behavior starts by an RTN
scenario and ends by an inverse RTN scenario. Nevertheless,
we suggest that for the inverse RTN transition (chaosf
periodicity), the bifurcation parameter should not be the same
as the one that we hypothesized could cause the RTN transition
(periodicityf chaos). It is reasonable to suppose that after the
onset of the chaotic phase, the diffusion and convection

properties do not change any further. In this lapse of time (about
2 h) a strong consumption of reactants occurred. The reactant
concentrations seem to be responsible for the second transition
chaosf quasiperiodicityf period-1.

IV. Conclusions

The results presented above give further evidence that the
aperiodic behavior observed in an unstirred batch BZ reaction
is an example of transient spatiotemporal chaos. We have also
demonstrated for the first time the chaotic behavior arising in
an RTN scenario and dying out by an inverse RTN scenario.
One scenario appears as the mirror image of the other.
Nevertheless, such symmetry does not seem to involve the
bifurcation parameters. The onset of chaos occurs by the
interplay of local kinetics, diffusion and convection. The end
of chaos is related to the consumption of the reactants.

Such results demonstrate once more that closed chemical
systems are capable of displaying chaos even in the presence
of the inevitable effects of reactant consumption.
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